Extensions 1→N→G→Q→1 with N=C32×Dic3 and Q=C2

Direct product G=N×Q with N=C32×Dic3 and Q=C2
dρLabelID
Dic3×C3×C672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C32×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×Dic3)⋊1C2 = C338D4φ: C2/C1C2 ⊆ Out C32×Dic336(C3^2xDic3):1C2216,129
(C32×Dic3)⋊2C2 = C3×C3⋊D12φ: C2/C1C2 ⊆ Out C32×Dic3244(C3^2xDic3):2C2216,122
(C32×Dic3)⋊3C2 = C3×S3×Dic3φ: C2/C1C2 ⊆ Out C32×Dic3244(C3^2xDic3):3C2216,119
(C32×Dic3)⋊4C2 = C3×C6.D6φ: C2/C1C2 ⊆ Out C32×Dic3244(C3^2xDic3):4C2216,120
(C32×Dic3)⋊5C2 = Dic3×C3⋊S3φ: C2/C1C2 ⊆ Out C32×Dic372(C3^2xDic3):5C2216,125
(C32×Dic3)⋊6C2 = C338(C2×C4)φ: C2/C1C2 ⊆ Out C32×Dic336(C3^2xDic3):6C2216,126
(C32×Dic3)⋊7C2 = C32×C3⋊D4φ: C2/C1C2 ⊆ Out C32×Dic336(C3^2xDic3):7C2216,139
(C32×Dic3)⋊8C2 = S3×C3×C12φ: trivial image72(C3^2xDic3):8C2216,136

Non-split extensions G=N.Q with N=C32×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×Dic3).1C2 = C334Q8φ: C2/C1C2 ⊆ Out C32×Dic372(C3^2xDic3).1C2216,130
(C32×Dic3).2C2 = C3×C322Q8φ: C2/C1C2 ⊆ Out C32×Dic3244(C3^2xDic3).2C2216,123
(C32×Dic3).3C2 = C32×Dic6φ: C2/C1C2 ⊆ Out C32×Dic372(C3^2xDic3).3C2216,135

׿
×
𝔽